Faculty
Home > Faculty > Content

QIANG Yan

2019/06/18 10:24:05

Name: QIANG Yan

Gender: Male

Mobile Phone: (86) -186351686803

E-mail: qiangyan99@foxmail.com

Major Selection: Computer Application Technology

Research Directions: Medical Image Big Data, Advanced Artificial Intelligence, Cloud Computing Technology, Bioinformatics

 

Publication:

1.     Hao R, Qiang Y, Yan X. Juxta-Vascular Pulmonary Nodule Segmentation in PET-CT Imaging Based on an LBF Active Contour Model with Information Entropy and Joint Vector.[J]. Computational and Mathematical Methods in Medicine,2018,(2018-1-8), 2018, 2018(1):1-10.SCI

2.     Qiang Y, Ge L, Hao R, et al. Automatic diagnosis of pulmonary nodules using a hierarchical extreme learning machine model[J]. International Journal of Bio-Inspired Computation, 2018, 11(3):192.SCI

3.     Qiang Y, Ge L, Zhao X, et al. Pulmonary nodule diagnosis using dualmodal supervised autoencoder based on extreme learning machine[J]. Expert Systems, 2017(11):e12224.SCI

4.     Liao Xiaolei, Zhao Juanjuan, Jiao Cheng, Lei Lei, Qiang Yan, Cui Qiang. A Segmentation Method for Lung Parenchyma Image Sequences Based on Superpixels and a Self-Generating Neural Forest[J]. Plos One, 2016, 11(8). (SCI

5.     Pan L, Qiang Y, Yuan J, et al. Rapid Retrieval of Lung Nodule CT Images Based on Hashing and Pruning Methods[J]. BioMed Research International, 2016, 2016:1-10. (SCI)

6.     Qiang, Y., Zhang, X., Ji, G., & Zhao, J. (2015). Automated Lung Nodule Segmentation Using an Active Contour Model Based on PET/CT Images.Journal of Computational and Theoretical Nanoscience, 12(8), 1972-1976.SCI

7.     Qiang, Y., Ji, G., Han, X., Zhao, J., Liao, X., & Cui, Z. (2015). Coarse-to-Fine Lung Segmentation in Computed Tomography Images. Journal of Computational and Theoretical Nanoscience, 12(2), 330-334. SCI

8.     Qiang Y, Pei B, Wei W, et al. An efficient cluster head selection approach for collaborative data processing in wireless sensor networks[J]. International Journal of Distributed Sensor Networks, 2015, 2015: 132.SCI

9.     Qiang Y, Pei B, Wu W, et al. Improvement of path analysis algorithm in social networks based on HBase[J]. Journal of Combinatorial Optimization, 2014, 28(3): 588-599.SCI

10.  Zhao, J., Ma, R., Qiang, Y., & Cui, Z. (2015). Solitary Pulmonary Nodule Segmentation Based on the Rolling Ball Method. Journal of Computational and Theoretical Nanoscience, 12(8), 1977-1983. SCI

11.  Zhao, J., Ji, G., Qiang, Y., Han, X., Pei, B., & Shi, Z. (2015). A New Method of Detecting Pulmonary Nodules with PET/CT Based on an Improved Watershed Algorithm. PloS one, 10(4). (SCI)

12.  Zhao,JJ; Wu,WL; Zhang, XL; Qiang, Y; Liu, T (Liu, Tao); Wu, LD. A short-term trend prediction model of topic over Sina Weibo dataset, JOURNAL OF COMBINATORIAL OPTIMIZATION,Volume: 28,Issue: 3,Pages: 613-625,Special Issue: SI,DOI: 10.1007/s10878-013-9674-0,Published: OCT 2014,IDS Number: AO6YL.(SCI)

13.  Wei, Wei; Qiang, Yan; Zhang, Jing. A Bijection between Lattice-Valued Filters and Lattice-Valued Congruences in Residuated LatticesMATHEMATICAL PROBLEMS IN ENGINEERING, 2013.(SCI)

14.  Cui, Q., Qiang, Z., Zhao, J., Qiang, Y., & Liao, X. (2017). A 3D Segmentation Method for Pulmonary Nodule Image Sequences based on Supervoxels and Multimodal Data. International Journal of Performability Engineering, 13(5).:682-696. (EI)

15.  Zhang, T., Zhao, J., Luo, J., & Qiang, Y. (2017). Deep Belief Network for Lung Nodules Diagnosed in CT Imaging. International Journal of Performability Engineering, 13(8). (EI)

16.  He, N., Zhang, X., Zhao, J., Zhao, H., & Qiang, Y. Pulmonary parenchyma segmentation in thin CT image sequences with spectral clustering and geodesic active contour model based on similarity[C]// International Conference on Digital Image Processing. 2017:104202G. (EI)

17.   Xiao X, Qiang Y, Zhao J, et al. A Deep Learning Model of Automatic Detection of Pulmonary Nodules Based on Convolution Neural Networks (CNNs)[C]// Bio-Inspired Computing - Theories and Applications. Springer Singapore, 2016:349-361. (EI)

Related News